Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EMBO J ; 42(21): e114719, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37737566

RESUMO

Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.


Assuntos
Quinase I-kappa B , Transdução de Sinais , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Janus Quinases/genética , Fatores de Transcrição STAT , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Methods Mol Biol ; 2686: 509-536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540375

RESUMO

Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Proteoma/química , Flores
3.
Mol Cell ; 83(15): 2673-2691.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506700

RESUMO

Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.


Assuntos
Timina DNA Glicosilase , Proteína Supressora de Tumor p53 , Animais , Camundongos , Ciclo Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Appl Food Res ; 3(2)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38566846

RESUMO

Analysis of volatile organic compounds (VOCs) can be an effective strategy to inspect the quality of horticultural commodities and following their degradation. In this work, we report that VOCs emitted by walnuts can be studied using gas chromatography-differential mobility spectrometry (GC-DMS), and those GC-DMS data can be analyzed to predict the rancidity of walnuts, i.e., classify walnuts into grades of freshness. Walnut kernels were assigned a class n depending on their level of freshness as determined by a peroxide assay. VOC samples were analyzed using GC-DMS. From these VOC data, a partial least square regression (PLSR) model provided a freshness prediction value m, which corresponded to the rancid class n when m=n±0.5. The PLSR model had an accuracy of 80% to predict walnut grade and demonstrated a minimal root mean squared error of 0.42 for the m response variables (representative of walnut grade) with the GC-DMS data. We also conducted gas chromatography-mass spectrometry (GC-MS) experiments to identify volatiles that emerged or were enhanced with more rancid walnuts. The findings of the GC-MS study of walnut VOCs align excellently with the GC-DMS study. Based on our results, we conclude that a GC-DMS device deployed with a pre-trained machine learning model can be a very effective device for classifying walnut grades in the industry.

5.
J Transl Med ; 20(1): 611, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544142

RESUMO

BACKGROUND: High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. Although most patients will initially respond to first-line treatment with a combination of surgery and platinum-based chemotherapy, up to a quarter will be resistant to treatment. We aimed to identify a new strategy to improve HGSC patient management at the time of cancer diagnosis (HGSC-1LTR). METHODS: A total of 109 ready-available formalin-fixed paraffin-embedded HGSC tissues obtained at the time of HGSC diagnosis were selected for proteomic analysis. Clinical data, treatment approach and outcomes were collected for all patients. An initial discovery cohort (n = 21) were divided into chemoresistant and chemosensitive groups and evaluated using discovery mass-spectrometry (MS)-based proteomics. Proteins showing differential abundance between groups were verified in a verification cohort (n = 88) using targeted MS-based proteomics. A logistic regression model was used to select those proteins able to correctly classify patients into chemoresistant and chemosensitive. The classification performance of the protein and clinical data combinations were assessed through the generation of receiver operating characteristic (ROC) curves. RESULTS: Using the HGSC-1LTR strategy we have identified a molecular signature (TKT, LAMC1 and FUCO) that combined with ready available clinical data (patients' age, menopausal status, serum CA125 levels, and treatment approach) is able to predict patient response to first-line treatment with an AUC: 0.82 (95% CI 0.72-0.92). CONCLUSIONS: We have established a new strategy that combines molecular and clinical parameters to predict the response to first-line treatment in HGSC patients (HGSC-1LTR). This strategy can allow the identification of chemoresistance at the time of diagnosis providing the optimization of therapeutic decision making and the evaluation of alternative treatment strategies. Thus, advancing towards the improvement of patient outcome and the individualization of HGSC patients' care.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Proteômica/métodos , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Proteínas/uso terapêutico , Biomarcadores Tumorais/metabolismo
6.
Nat Commun ; 13(1): 7024, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411288

RESUMO

Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.


Assuntos
Expossoma , Gravidez , Feminino , Humanos , Exposição Ambiental/efeitos adversos , Estudos de Coortes , Metaboloma , Transcriptoma
7.
Nucleic Acids Res ; 50(14): 8207-8225, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848924

RESUMO

RNA-binding proteins (RBPs) have been relatively overlooked in cancer research despite their contribution to virtually every cancer hallmark. Here, we use RNA interactome capture (RIC) to characterize the melanoma RBPome and uncover novel RBPs involved in melanoma progression. Comparison of RIC profiles of a non-tumoral versus a metastatic cell line revealed prevalent changes in RNA-binding capacities that were not associated with changes in RBP levels. Extensive functional validation of a selected group of 24 RBPs using five different in vitro assays unveiled unanticipated roles of RBPs in melanoma malignancy. As proof-of-principle we focused on PDIA6, an ER-lumen chaperone that displayed a novel RNA-binding activity. We show that PDIA6 is involved in metastatic progression, map its RNA-binding domain, and find that RNA binding is required for PDIA6 tumorigenic properties. These results exemplify how RIC technologies can be harnessed to uncover novel vulnerabilities of cancer cells.


Assuntos
Melanoma , Metástase Neoplásica , Isomerases de Dissulfetos de Proteínas , Proteínas de Ligação a RNA , Linhagem Celular Tumoral , Retículo Endoplasmático , Humanos , Melanoma/genética , Melanoma/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Metástase Neoplásica/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Sci Rep ; 12(1): 4445, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292711

RESUMO

Despite recent advances in the management of BRCA1 mutated high-grade serous ovarian cancer (HGSC), the physiology of these tumors remains poorly understood. Here we provide a comprehensive molecular understanding of the signaling processes that drive HGSC pathogenesis with the addition of valuable ubiquitination profiling, and their dependency on BRCA1 mutation-state directly in patient-derived tissues. Using a multilayered proteomic approach, we show the tight coordination between the ubiquitination and phosphorylation regulatory layers and their role in key cellular processes related to BRCA1-dependent HGSC pathogenesis. In addition, we identify key bridging proteins, kinase activity, and post-translational modifications responsible for molding distinct cancer phenotypes, thus providing new opportunities for therapeutic intervention, and ultimately advance towards a more personalized patient care.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Reparo do DNA , Feminino , Humanos , Mutação , Neoplasias Ovarianas/patologia , Proteômica
10.
Anal Chem ; 93(34): 11649-11653, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34404205

RESUMO

The need for a better understanding of cellular heterogeneity has pushed mass spectrometry technologies to the analysis of single-cell and single-cell-type proteomes, although several challenges still limit their widespread implementation. Among the efforts toward single-cell and low-input analyses, there is the adoption of data-independent acquisition methods to increase analytical sensitivity. Here, we revisited the use of linear ion traps mass analyzers in data-independent acquisition methods and demonstrate their benefits to boost peptide and protein identifications in low-input proteomes.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Peptídeos
11.
Cancers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922979

RESUMO

High-grade serous ovarian cancer (HGSC) remains the most common and deadly subtype of ovarian cancer. It is characterized by its late diagnosis and frequent relapse despite standardized treatment with cytoreductive surgery and platinum-based chemotherapy. The past decade has seen significant advances in the clinical management and molecular understanding of HGSC following the publication of the Cancer Genome Atlas (TCGA) researchers and the introduction of targeted therapies with anti-angiogenic drugs and poly(ADP-ribose) polymerase inhibitors in specific subgroups of patients. We provide a comprehensive review of HGSC, focusing on the most important molecular advances aimed at providing a better understanding of the disease and its response to treatment. We emphasize the role that proteomic technologies are now playing in these two aspects of the disease, through the identification of proteins and their post-translational modifications in ovarian cancer tumors. Finally, we highlight how the integration of proteomics with genomics, exemplified by the work performed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), can guide the development of new biomarkers and therapeutic targets.

12.
Hepatology ; 74(3): 1546-1559, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33730435

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of liver disease in children. Mercury (Hg), a ubiquitous toxic metal, has been proposed as an environmental factor contributing to toxicant-associated fatty liver disease. APPROACH AND RESULTS: We investigated the effect of prenatal exposure to Hg on childhood liver injury by combining epidemiological results from a multicenter mother-child cohort with complementary in vitro experiments on monocyte cells that are known to play a key role in liver immune homeostasis and NAFLD. We used data from 872 mothers and their children (median age, 8.1 years; interquartile range [IQR], 6.5-8.7) from the European Human Early-Life Exposome cohort. We measured Hg concentration in maternal blood during pregnancy (median, 2.0 µg/L; IQR, 1.1-3.6). We also assessed serum levels of alanine aminotransferase (ALT), a common screening tool for pediatric NAFLD, and plasma concentrations of inflammation-related cytokines in children. We found that prenatal Hg exposure was associated with a phenotype in children that was characterized by elevated ALT (≥22.1 U/L for females and ≥25.8 U/L for males) and increased concentrations of circulating IL-1ß, IL-6, IL-8, and TNF-α. Consistently, inflammatory monocytes exposed in vitro to a physiologically relevant dose of Hg demonstrated significant up-regulation of genes encoding these four cytokines and increased concentrations of IL-8 and TNF-α in the supernatants. CONCLUSIONS: These findings suggest that developmental exposure to Hg can contribute to inflammation and increased NAFLD risk in early life.


Assuntos
Mercúrio/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , Alanina Transaminase , Criança , Estudos de Coortes , Citocinas , Suscetibilidade a Doenças , Expossoma , Feminino , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Exposição Materna , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
BMC Med ; 18(1): 243, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32811491

RESUMO

BACKGROUND: The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. METHODS: We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. RESULTS: Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. CONCLUSION: In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis.


Assuntos
Biomarcadores/sangue , Metilação de DNA/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
14.
J Breath Res ; 14(4): 046005, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32272460

RESUMO

Oxidative stress is associated with numerous health conditions and disorders, and aldehydes are known biomarkers of oxidative stress that can be non-invasively measured in exhaled human breath. Few studies report breath aldehyde levels in human populations, and none claim participant numbers in the hundreds or more. Further, the breath community must first define the existing aldehyde concentration variance in a normal population to understand when these levels are significantly perturbed by exogenous stressors or health conditions. In this study, we collected breath samples from 692 participants and quantified C4-C10 straight chain aldehyde levels. C9 aldehyde was the most abundant in breath, followed by C6. C4 and C5 appear to have bimodal distributions. Post hoc, we mined our dataset for other breath carbonyls captured by our assay, which involves elution of breath samples onto a solid phase extraction cartridge, derivatization and liquid chromatography-quadrupole time of flight mass spectrometry (LC-qTOF). We found a total of 21 additional derivatized compounds. Using self-reported demographic factors from our participants, we found no correlation between these breath carbonyls and age, gender, body mass index (BMI), ethnicity or smoking habit (tobacco and marijuana). This work was preceded by a small confounders study, which was intended to refine our breath collection procedure. We found that breath aldehyde levels can be affected by participants' using scented hygiene products such as lotions and mouthwashes, while collecting consecutive breath samples, rinsing the mouth with water, and filtering inspired air did not have an effect. Using these parameters to guide our sampling, subjects were instructed to avoid the prior conditions to provide a breath sample for our study.


Assuntos
Aldeídos/análise , Testes Respiratórios/métodos , Adulto , Biomarcadores/análise , Índice de Massa Corporal , Fatores de Confusão Epidemiológicos , Etnicidade , Expiração , Feminino , Produtos Domésticos , Humanos , Masculino , Fumar
15.
JAMA Netw Open ; 3(3): e201007, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32176304

RESUMO

Importance: The balance of mercury risk and nutritional benefit from fish intake during pregnancy for the metabolic health of offspring to date is unknown. Objective: To assess the associations of fish intake and mercury exposure during pregnancy with metabolic syndrome in children and alterations in biomarkers of inflammation in children. Design, Setting, and Participants: This population-based prospective birth cohort study used data from studies performed in 5 European countries (France, Greece, Norway, Spain, and the UK) between April 1, 2003, and February 26, 2016, as part of the Human Early Life Exposome (HELIX) project. Mothers and their singleton offspring were followed up until the children were aged 6 to 12 years. Data were analyzed between March 1 and August 2, 2019. Exposures: Maternal fish intake during pregnancy (measured in times per week) was assessed using validated food frequency questionnaires, and maternal mercury concentration (measured in micrograms per liter) was assessed using maternal whole blood and cord blood samples. Main Outcomes and Measures: An aggregate metabolic syndrome score for children was calculated using the z scores of waist circumference, systolic and diastolic blood pressures, and levels of triglyceride, high-density lipoprotein cholesterol, and insulin. A higher metabolic syndrome score (score range, -4.9 to 7.5) indicated a poorer metabolic profile. Three protein panels were used to measure several cytokines and adipokines in the plasma of children. Results: The study included 805 mothers and their singleton children. Among mothers, the mean (SD) age at cohort inclusion or delivery of their infant was 31.3 (4.6) years. A total of 400 women (49.7%) had a high educational level, and 432 women (53.7%) were multiparous. Among children, the mean (SD) age was 8.4 (1.5) years (age range, 6-12 years). A total of 453 children (56.3%) were boys, and 734 children (91.2%) were of white race/ethnicity. Fish intake consistent with health recommendations (1 to 3 times per week) during pregnancy was associated with a 1-U decrease in metabolic syndrome score in children (ß = -0.96; 95% CI, -1.49 to -0.42) compared with low fish consumption (<1 time per week) after adjusting for maternal mercury levels and other covariates. No further benefit was observed with fish intake of more than 3 times per week. A higher maternal mercury concentration was independently associated with an increase in the metabolic syndrome score of their offspring (ß per 2-fold increase in mercury concentration = 0.18; 95% CI, 0.01-0.34). Compared with low fish intake, moderate and high fish intake during pregnancy were associated with reduced levels of proinflammatory cytokines and adipokines in children. An integrated analysis identified a cluster of children with increased susceptibility to metabolic disease, which was characterized by low fish consumption during pregnancy, high maternal mercury levels, decreased levels of adiponectin in children, and increased levels of leptin, tumor necrosis factor α, and the cytokines interleukin 6 and interleukin 1ß in children. Conclusions and Relevance: Results of this study suggest that moderate fish intake consistent with current health recommendations during pregnancy was associated with improvements in the metabolic health of children, while high maternal mercury exposure was associated with an unfavorable metabolic profile in children.


Assuntos
Peixes , Inflamação/metabolismo , Exposição Materna/efeitos adversos , Intoxicação por Mercúrio/metabolismo , Mercúrio/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Criança , Feminino , Humanos , Incidência , Intoxicação por Mercúrio/epidemiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estudos Prospectivos , Fatores de Risco , Estados Unidos/epidemiologia
16.
Mol Cell ; 75(4): 669-682.e5, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31302002

RESUMO

Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.


Assuntos
Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Quinase I-kappa B/metabolismo , Irinotecano/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias , Neoplasias , Animais , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Humanos , Quinase I-kappa B/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Telômero/genética , Telômero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Rep ; 9(1): 6014, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979931

RESUMO

Dysregulation of the DYRK1A protein kinase has been associated with human disease. On the one hand, its overexpression in trisomy 21 has been linked to certain pathological traits of Down syndrome, while on the other, inactivating mutations in just one allele are responsible for a distinct yet rare clinical syndrome, DYRK1A haploinsufficiency. Moreover, altered expression of this kinase may also provoke other human pathologies, including cancer and diabetes. Although a few DYRK1A substrates have been described, its upstream regulators and downstream targets are still poorly understood, an information that could shed light on the functions of DYRK1A in the cell. Here, we carried out a proteomic screen using antibody-based affinity purification coupled to mass spectrometry to identify proteins that directly or indirectly bind to endogenous DYRK1A. We show that the use of a cell line not expressing DYRK1A, generated by CRISPR/Cas9 technology, was needed in order to discriminate between true positives and non-specific interactions. Most of the proteins identified in the screen are novel candidate DYRK1A interactors linked to a variety of activities in the cell. The in-depth characterization of DYRK1A's functional interaction with one of them, the E3 ubiquitin ligase RNF169, revealed a role for this kinase in the DNA damage response. We found that RNF169 is a DYRK1A substrate and we identified several of its phosphorylation sites. In particular, one of these sites appears to modify the ability of RNF169 to displace 53BP1 from sites of DNA damage. Indeed, DYRK1A depletion increases cell sensitivity to ionizing irradiation. Therefore, our unbiased proteomic screen has revealed a novel activity of DYRK1A, expanding the complex role of this kinase in controlling cell homeostasis.


Assuntos
Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Humanos , Quinases Dyrk
18.
Sci Adv ; 5(3): eaav2448, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854431

RESUMO

Profiling the chromatin-bound proteome (chromatome) in a simple, direct, and reliable manner might be key to uncovering the role of yet uncharacterized chromatin factors in physiology and disease. Here, we have designed an experimental strategy to survey the chromatome of proliferating cells by using the DNA-mediated chromatin pull-down (Dm-ChP) technology. Our approach provides a global view of cellular chromatome under normal physiological conditions and enables the identification of chromatin-bound proteins de novo. Integrating Dm-ChP with genomic and functional data, we have discovered an unexpected chromatin function for adenosylhomocysteinase, a major one-carbon pathway metabolic enzyme, in gene activation. Our study reveals a new regulatory axis between the metabolic state of pluripotent cells, ribosomal protein production, and cell division during the early phase of embryo development, in which the metabolic flux of methylation reactions is favored in a local milieu.


Assuntos
Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Cromatina/genética , Células-Tronco/metabolismo , Animais , Biologia Computacional/métodos , Epigênese Genética , Genoma , Genômica/métodos , Humanos , Camundongos , Células-Tronco/citologia
19.
Anal Chem ; 90(21): 12339-12341, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30295461

RESUMO

Data-independent acquisition methods that acquire fragment ions from virtually any peptide in a sample have expanded the benefits of low-throughput targeted proteomics to proteome-wide analyses. While these methods have increased the reproducibility of peptide quantification across multiple samples, their sensitivity is still limited, and the quantification of complete proteomes remains a challenge. Here we present DIA+, a DIA method that combines signals from identical peptides with different charge states, resulting in improved signal-to-noise, additional number of fragments, and therefore in a higher number of identified and quantified peptides in complex samples.


Assuntos
Peptídeos/análise , Proteoma/química , Proteômica , Humanos
20.
BMJ Open ; 8(9): e021311, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206078

RESUMO

PURPOSE: Essential to exposome research is the collection of data on many environmental exposures from different domains in the same subjects. The aim of the Human Early Life Exposome (HELIX) study was to measure and describe multiple environmental exposures during early life (pregnancy and childhood) in a prospective cohort and associate these exposures with molecular omics signatures and child health outcomes. Here, we describe recruitment, measurements available and baseline data of the HELIX study populations. PARTICIPANTS: The HELIX study represents a collaborative project across six established and ongoing longitudinal population-based birth cohort studies in six European countries (France, Greece, Lithuania, Norway, Spain and the UK). HELIX used a multilevel study design with the entire study population totalling 31 472 mother-child pairs, recruited during pregnancy, in the six existing cohorts (first level); a subcohort of 1301 mother-child pairs where biomarkers, omics signatures and child health outcomes were measured at age 6-11 years (second level) and repeat-sampling panel studies with around 150 children and 150 pregnant women aimed at collecting personal exposure data (third level). FINDINGS TO DATE: Cohort data include urban environment, hazardous substances and lifestyle-related exposures for women during pregnancy and their offspring from birth until 6-11 years. Common, standardised protocols were used to collect biological samples, measure exposure biomarkers and omics signatures and assess child health across the six cohorts. Baseline data of the cohort show substantial variation in health outcomes and determinants between the six countries, for example, in family affluence levels, tobacco smoking, physical activity, dietary habits and prevalence of childhood obesity, asthma, allergies and attention deficit hyperactivity disorder. FUTURE PLANS: HELIX study results will inform on the early life exposome and its association with molecular omics signatures and child health outcomes. Cohort data are accessible for future research involving researchers external to the project.


Assuntos
Exposição Ambiental , Mães/estatística & dados numéricos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Biomarcadores/sangue , Biomarcadores/urina , Pressão Sanguínea , Composição Corporal , Pesos e Medidas Corporais , Pré-Escolar , Metilação de DNA , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Feminino , Hipersensibilidade Alimentar/epidemiologia , Interação Gene-Ambiente , Substâncias Perigosas , Humanos , Lactente , Recém-Nascido , Masculino , Metaboloma , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estudos Prospectivos , Proteoma , Testes Psicológicos , Testes de Função Respiratória , Fumar/epidemiologia , Fatores Socioeconômicos , Transcriptoma , População Urbana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA